On Constraint Problems with Incomplete or Erroneous Data

نویسنده

  • Neil Yorke-Smith
چکیده

Real-world constraint problems abound with uncertainty. Problems with incomplete or erroneous data are often simplified at present to tractable deterministic models, or modified using error correction methods, with the aim of seeking a solution. However, this can lead us to solve the wrong problem because of the approximations made, an outcome of little help to the user who expects the right problem to be tackled and correct information returned. The certainty closure framework aims at fulfilling these expectations of correct, reliable reasoning in the presence of uncertain data. In this short paper we give an intuition and brief overview of the framework. We define the certainty closure to an uncertain constraint problem and show how it can be derived by transformation to an equivalent certain problem. We outline an application of the framework to a real-world network traffic analysis problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Certainty Closure Reasoning About Constraint Problems with Uncertain Data

We present a generic framework to reason about constraint problems with incomplete or erroneous data. Such problems are often simplified at present to tractable deterministic models, or modified using error correction methods, with the aim of seeking a solution. However, this can lead us to solve the wrong problem because of the approximations made. Such an outcome is of little help to the user...

متن کامل

Certainty Closure: A Framework for Reliable Constraint Reasoning with Uncertainty

Constraint problems with incomplete or erroneous data are often simplified to tractable deterministic models, or modified using error correction methods, with the aim of seeking a solution. However, this can lead us to solve the wrong problem because of the approximations made. Such an outcome is of little help to a user who expects the right problem to be tackled and reliable information retur...

متن کامل

Closures of Uncertain Constraint Satisfaction Problems

Data uncertainties are inherent in the real world. The uncertain CSP (UCSP) is an extension of classical CSP that models incomplete and erroneous data by coefficients in the constraints whose values are unknown but bounded, for instance by an interval. Formally, the UCSP is a tractable restriction of the quantified CSP. The resolution of a UCSP, a set of its potential solutions called a closure...

متن کامل

ارائه مدلی برای حل مسائل برنامه‌ریزی تصادفی چند هدفه با استفاده از تابع عضویت هذلولوی

Since most real-world decision problems, because of incomplete information or the existence of linguistic information in the data are including uncertainties. Stochastic programming and fuzzy programming as two conventional approaches to such issues have been raised. Stochastic programming deals with optimization problems where some or all the parameters are described by stochastic variables. I...

متن کامل

Data Uncertainty in Constraint Programming: A Non-Probabilistic Approach

The constraint programming paradigm has proved to have the flexibility and efficiency necessary to treat well-defined largescale optimisation (LSCO) problems. Many real world problems, however, are ill-defined, incomplete, or have uncertain data. Research on ill-defined LSCO problems has centred on modelling the uncertainties by approximating the state of the real world, with no guarantee as a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002